/Prelude-v23.1.0/Natural/sort.dhall
Copy path to clipboardsort
sorts a List
of Natural
s in ascending order
Examples
partitionMinima [ 2, 1, 1, 3 ] ≡ { true = [ 1, 1 ], false = [ 2, 3 ] }
step { sorted = [ 1, 1 ], rest = [ 2, 3 ] }
≡ { sorted = [ 1, 1, 2 ], rest = [ 3 ] }
sort ([] : List Natural) ≡ ([] : List Natural)
sort [ 1 ] ≡ [ 1 ]
sort [ 3, 2, 1, 3, 2, 1 ] ≡ [ 1, 1, 2, 2, 3, 3 ]
Source
--| `sort` sorts a `List` of `Natural`s in ascending order
let greaterThanEqual =
missing sha256:30ebfab0febd7aa0ccccfdf3dc36ee6d50f0117f35dd4a9b034750b7e885a1a4
? ./greaterThanEqual.dhall
let listMin =
missing sha256:ee70b0d010bbca6012162e8ae1f6e9d9bd10a152675509b0f23145b98b5d43c6
? ./listMin.dhall
let List/partition =
missing sha256:38147ac6d750a6492736dd90cc967bf09aa405c499de943c64fab7b86ae02f03
? ../List/partition.dhall
let Accumulator = { sorted : List Natural, rest : List Natural }
let partitionMinima =
λ(xs : List Natural) →
merge
{ Some =
λ(m : Natural) → List/partition Natural (greaterThanEqual m) xs
, None = { true = [] : List Natural, false = [] : List Natural }
}
(listMin xs)
let test0 =
assert
: partitionMinima [ 2, 1, 1, 3 ] ≡ { true = [ 1, 1 ], false = [ 2, 3 ] }
let step =
λ(x : Accumulator) →
let p = partitionMinima x.rest
in { sorted = x.sorted # p.true, rest = p.false }
let test1 =
assert
: step { sorted = [ 1, 1 ], rest = [ 2, 3 ] }
≡ { sorted = [ 1, 1, 2 ], rest = [ 3 ] }
let sort
: List Natural → List Natural
= λ(xs : List Natural) →
let x =
Natural/fold
(List/length Natural xs)
Accumulator
step
{ sorted = [] : List Natural, rest = xs }
in x.sorted
let example0 = assert : sort ([] : List Natural) ≡ ([] : List Natural)
let example1 = assert : sort [ 1 ] ≡ [ 1 ]
let example2 = assert : sort [ 3, 2, 1, 3, 2, 1 ] ≡ [ 1, 1, 2, 2, 3, 3 ]
in sort