/Prelude-v20.0.0/Monoid.dhall
Copy path to clipboardAny function f
that is a Monoid
must satisfy the following law:
t : Type
f : ./Monoid t
xs : List (List t)
f (./List/concat t xs) = f (./map (List t) t f xs)
Examples:
./Bool/and
: ./Monoid Bool
./Bool/or
: ./Monoid Bool
./Bool/even
: ./Monoid Bool
./Bool/odd
: ./Monoid Bool
./List/concat
: ∀(a : Type) → ./Monoid (List a)
./List/shifted
: ∀(a : Type) → ./Monoid (List { index : Natural, value : a })
./Natural/sum
: ./Monoid Natural
./Natural/product
: ./Monoid Natural
./Optional/head
: ∀(a : Type) → ./Monoid (Optional a)
./Optional/last
: ∀(a : Type) → ./Monoid (Optional a)
./Text/concat
: ./Monoid Text
Source
{-|
Any function `f` that is a `Monoid` must satisfy the following law:
```
t : Type
f : ./Monoid t
xs : List (List t)
f (./List/concat t xs) = f (./map (List t) t f xs)
```
Examples:
```
./Bool/and
: ./Monoid Bool
./Bool/or
: ./Monoid Bool
./Bool/even
: ./Monoid Bool
./Bool/odd
: ./Monoid Bool
./List/concat
: ∀(a : Type) → ./Monoid (List a)
./List/shifted
: ∀(a : Type) → ./Monoid (List { index : Natural, value : a })
./Natural/sum
: ./Monoid Natural
./Natural/product
: ./Monoid Natural
./Optional/head
: ∀(a : Type) → ./Monoid (Optional a)
./Optional/last
: ∀(a : Type) → ./Monoid (Optional a)
./Text/concat
: ./Monoid Text
```
-}
let Monoid
: ∀(m : Type) → Type
= λ(m : Type) → List m → m
in Monoid