/Prelude-v19.0.0/Natural/fold.dhall
Copy path to clipboardfold
is the primitive function for consuming Natural
numbers
If you treat the number 3
as succ (succ (succ zero))
then a fold
just
replaces each succ
and zero
with something else
Examples
fold 3 Natural (λ(x : Natural) → 5 * x) 1 ≡ 125
(λ(zero : Natural) → fold 3 Natural (λ(x : Natural) → 5 * x) zero)
≡ (λ(zero : Natural) → 5 * (5 * (5 * zero)))
( λ(natural : Type) →
λ(succ : natural → natural) →
λ(zero : natural) →
fold 3 natural succ zero
)
≡ ( λ(natural : Type) →
λ(succ : natural → natural) →
λ(zero : natural) →
succ (succ (succ zero))
)
Source
{-|
`fold` is the primitive function for consuming `Natural` numbers
If you treat the number `3` as `succ (succ (succ zero))` then a `fold` just
replaces each `succ` and `zero` with something else
-}
let fold
: Natural →
∀(natural : Type) →
∀(succ : natural → natural) →
∀(zero : natural) →
natural
= Natural/fold
let example0 = assert : fold 3 Natural (λ(x : Natural) → 5 * x) 1 ≡ 125
let example1 =
assert
: (λ(zero : Natural) → fold 3 Natural (λ(x : Natural) → 5 * x) zero)
≡ (λ(zero : Natural) → 5 * (5 * (5 * zero)))
let example2 =
assert
: ( λ(natural : Type) →
λ(succ : natural → natural) →
λ(zero : natural) →
fold 3 natural succ zero
)
≡ ( λ(natural : Type) →
λ(succ : natural → natural) →
λ(zero : natural) →
succ (succ (succ zero))
)
in fold